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Abstract - In this paper we present some mathematical model and some numerical approach for a
computer-based simulation of electric fault arc tests. In particular, we replace the complex initial-
boundary value problem of heat transfer in arc tests by using a one-dimensional model based on a purely
time-dependent temperature function G(t) of hot gas in a neighborhood of the arc. We are especially
interested in the identification of this parameter function G from temperature measurements at a defined
distance to the arc during some time interval, where a simplified test procedure is exploited for obtaining
temperature data. This ill-posed inverse problem of determining G is investigated in detail. We present
a least-squares solution indicating the ill-posedness effect by strong oscillations and compare a solution
from Tikhonov regularization with a solution from a descriptive regularization approach. A sensitivity
study completes the paper.

1. INTRODUCTION AND TECHNICAL BACKGROUND
Fault arc tests are performed in textile research and certification of protective clothes. Textile protection
is used for human people working on electric installations, where a potential risk of fault arc accidents
occurs causing human injury with heavy burns. There are different arc test methods in the international
standardization, [6]. One special European test is the so called CENELEC test, prescribed in the pre-
standard ENV 50354:2001. This box-arc test method described in [8] contains a visual assessment (after
flaming, hole formation, shrinking etc.) as a qualitative criterion and was extended and improved by
including additionally a quantitative measurement of temperatures in order to get information about
the really transmitted energy. The schematic test arrangement of such a complemented test is shown in
Figure 1.
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Figure 1: Schematic test arrangement.

An electric arc is fired between two vertically arranged electrodes in a test circuit of defined voltage
(AC). After the burning-time interval of tp = 0.5s the arc is switched off. A surrounding box focuses
thermal arc effects in direction to a test plate with test object, which is arranged in a defined distance
to the electrodes. The object consists of a variable number of textile layers stretched onto the test plate
and of a skin-simulating copper calorimeter embedded by an isolating block in the test plate as shown
in Figure 1. The calorimeter is connected with a thermocouple, and so the calorimeter temperature is
measured from the arc ignition (t = 0) until the end of measuring time tend = 30s.
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A numerical simulation of calorimetric arc effects based on the complemented test method was realized
at the Chemnitz University of Technology in cooperation with the Saxon Textile Research Institute (STFI)
and the Ilmenau University of Technology, [9]. For the mathematical simulation of the test we used a
mathematical model, which will be described below in section 2. In the model building process we have
replaced the very complex structure of the system formed by arc, heated gas and reflecting box by a gas
temperature function depending on time. The determination of this parameter function which influences
the result of test simulation in an essential manner leads to the inverse problem discussed in this paper.
Before handling the stable approximate solution of this inverse problem in section 4, we briefly mention
the numerical solution of the associated forward problem in section 3.

2. THE MATHEMATICAL MODEL
We have simplified the whole test arrangement in form of a locally one-dimensional heat equation problem,
where the gas temperature near the arc is assumed to be a function G(t) of time t only. The spatial
x-axis lies orthogonal to the surface of the test object (plate with or without textile) such that heat fluxes
of interest here are directed along the x-axis. Figure 2 shows the modeled object with three textile layers
as an example.

2s  s = d3s = d1 1 sd+d =ls = 00

calorimetertextile layers

x

G(t)

Gas temperature

Figure 2: 1D-model of the object.

We use the following notations:
x 1D local coordinate, x ∈ Ω = [0, l],
t time, t ∈ [0, tend],
u = u(x, t) temperature in the object,
G = G(t) temperature of the hot gas,
CA(x, t, u(x, t)) apparent heat capacity (modified, specified by volume),
κ(x, u(x, t)) thermal conductivity,
frad(x, t,G(t), u(0, t)) radiation heat source term,
h0, hs heat transfer coefficients.

The occurring temperatures u and G are seen as relative temperatures with respect to the ambient
temperature which is defined as Tamb = 0. However, for modeling the radiation absolute temperatures
are needed. For this case, sometimes the assumed room temperature of T0 = 300K is added to the
relative temperatures.

Then, the temperature distribution u = u(x, t), x ∈ [0, l], t ∈ [0, tend] under consideration is the
solution of the initial-boundary value problem to the heat equation

CA(x, t, u(x, t))
∂u

∂t
− ∂

∂x

(
κ(x, u(x, t))

∂u

∂x

)
= frad(x, t,G(t), u(0, t)) (x ∈ (0, l), t ∈ (0, tend]) (1)

with boundary conditions

−κ(0, u(0, t))
∂u(x, t)

∂x

∣∣∣∣
x=0

= h0(G(t)− u(0, t)) (t ∈ (0, tend]), (2)

κ(l, u(l, t))
∂u(x, t)

∂x

∣∣∣∣
x=l

= hs(Tamb − u(l, t)) (t ∈ (0, tend]) (3)

and initial condition
u(x, 0) = 0 (x ∈ [0, l]). (4)
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Heat effects enter the model by boundary conditions in form of heat transition and by the source term
frad in the differential equation indicating the effect of radiation.

In order to calculate u(x, t) from (1) – (4) the knowledge of the gas temperature G(t) is required. For
the determination of this function temperature measurement data from calibration tests are used. The
calibration test is performed without textile layers, where the object consists of the test plate with the
calorimeter only. For this reason, we use the simplified version

CCu
∂u

∂t
− ∂

∂x

(
κCu

∂u

∂x

)
= frad(x, t,G(t), u(0, t)) (x ∈ (0, l), t ∈ (0, tend]) (5)

of heat equation. Here the volumetric heat capacity CCu and the thermal conductivity κCu are assumed
to be constant. Note that κCu in fact depends on the temperature, but the measured and simulated
temperatures of the copper calorimeter are from the temperature interval [20◦C, 110◦C] (see section 4).
For this range, however, the thermal conductivity of copper is nearly a constant (see, e.g. [5, Chap. 6-12,
Table 6-18]). The radiation source term has the structure

frad(x, t,G(t), u(0, t)) = γe−γx
(
qa(t) + βGas(G(t) + T0)4 − βObj

(
(u(0, t) + T0)4 − T 4

0

))
(6)

for x ∈ (0, l) and t ∈ (0, tend] with positive constants βGas, βObj and γ; qa is a given source term of the
burning arc. The boundary conditions (2) – (3) are reduced to

−κCu
∂u(x, t)

∂x

∣∣∣∣
x=0

= h0(G(t)− u(0, t)) (t ∈ [0, tend]) (7)

and
κCu

∂u(x, t)
∂x

∣∣∣∣
x=l

= hs(Tamb − u(l, t)) (t ∈ [0, tend]) . (8)

The inverse problem under consideration here aims at finding the gas temperature function G(t) from
given data u(l, t) for t ∈ [0, tend] solving the problem (5) – (8) with initial condition (4).

In this special situation the model contains nonlinearities only in the radiation source term. The
forward operator F mapping the function G(t) to be determined to the observable temperature function
u(l, t) (t ∈ [0, tend]) is continuous and small changes in G cause only small changes in u. This is a
consequence of well-known stability assertions with respect to perturbations in the source term and in
the boundary condition of parabolic initial-boundary value problems (see [2, Chapter 5, §3 (Lemma 2)]
for a C-space setting and [7, Chapter IV, Theorem 9.1] for an Lp-space setting). The well-known theory
of parabolic equations is applicable, since the source function frad in (5) is smooth and continuously
differentiable with respect to G and the mean value theorem provides appropriate parabolic initial-
boundary value problems in which only the increment ∆G of the gas temperature function occurs as a
perturbation in the source term and in the boundary condition.

3. NUMERICAL APPROXIMATION OF THE FORWARD PROBLEM
In this section, we roughly outline the approximate numerical solution of the initial-boundary value
problem (1) – (4) that characterizes the forward problem which is to be solved for simulating the effects
of fault arc accidents if textile material is used in order to avoid heavy burns. Here, the gas temperature
G(t) is assumed to be known. The time- and space-dependence and the nonlinearities in CA, κ and frad
require some special treatment.

We are going to use a classical time–stepping algorithm such as backward Euler or the Crank–Nicolson
scheme: Let τ denote the time increment and un(x) the approximate solution at time step tn, then for
tn+1 = tn + τ we have to solve the nonlinear differential equation

CA(x, t∗n, un,∗)
un+1 − un

τ
− ∂

∂x

(
(κ(x, un,∗)

∂

∂x
un,∗

)
= frad (x, t∗n, G(t∗n), un,∗(0)) (x ∈ (0, l)) (9)

in space with boundary conditions

−κ
(
0, un+1(0)

)
∂
∂xun+1(0) = h0

(
G(t∗n)− un+1(0)

)
,

κ
(
l, un+1(l)

)
∂
∂xun+1(l) = hs

(
Tamb − un+1(l)

)
.

Here, t∗n = (1−σ)tn +σtn+1 = tn +στ and un,∗(x) = (1−σ)un(x)+σun+1(x) describe the approximation
of u(x, tn + στ). The choice σ = 0 belongs to the simple explicit Euler scheme, which is known to be
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stable only for very small time step restrictions. So we prefer for simplicity the backward Euler scheme
with σ = 1. Note that σ = 1

2 would yield the Crank–Nicolson scheme.
For the discretization in space, we can use linear finite elements. Here, the fact of one space dimension

leads to stiffness and mass matrices that are tridiagonal and each linear system with such a matrix is
solved with optimal arithmetical complexity (proportional to the number of unknowns). So, we can use
a very fine mesh without problems of calculation time. From this reason it seems to be convenient to
focus on linear elements. Let xi = ih be the discretization points and ϕi(x) the hat–functions (linear in
each interval [xi−1, xi] and ϕi(xj) = δij) with h = l/N and i = 0, . . . , N . The equidistance of the points
xi is not necessary. Therefore, we assume x = s0, x = s1, x = s2, . . . , x = d (see Figure 2) to coincide
with some of the nodal points xj . Then, the weak formulation of (9) reads as:
Find un+1(x) ∈ H1(0, l) with

〈CAun+1, v〉+ τ〈κ ∂

∂x
un+1,

∂

∂x
v〉+ τv(0)h0u

n+1(0) + τv(l)hsu
n+1(l)

= τ〈f, v〉+ 〈CAun, v〉+ v(0)τh0G(tn+1) + v(l)τhsTamb ∀v ∈ H1(0, l) (10)

Here, 〈u, v〉 =
l∫
0

u · v dx stands for the L2–inner product of functions over [0, l]. Note that CA, κ and f

contain the nonlinearities associated with its dependence on the solution un+1 of the actual time step.
For the full implicit scheme, we have

CA = CA(x, tn+1, u
n+1)

κ = κ(x, un+1)
f(x) = frad(x, tn+1, G(tn+1), un+1(0)) .

With un+1(x) =
N∑

i=0

un+1
i ϕi(x) we represent the finite element approximation of this function by a

unique vector un+1 = (un+1
i )N

i=0 ∈ RN+1. Then (10) coincides with the non–linear system of N + 1
equations

M(un+1)un+1 + τK(un+1)un+1 = τb(un+1) + M(un+1)un (11)

with the tridiagonal matrices M and K, which depend on the solution as

M(u) =
(
〈CA(u)ϕj , ϕi〉

)N

i,j=0
,

K(u) =
(
〈κ(u)

∂

∂x
ϕj ,

∂

∂x
ϕi〉+ h0ϕj(0)ϕi(0) + hsϕj(l)ϕi(l)

)N

i,j=0

and
b(u) = ( 〈f(u), ϕi〉+ ϕi(0)h0G(tn+1) + ϕi(l)hsTamb)N

i=0 .

For the solution of the non–linear vector equation (11) we may use some iteration steps of the following
process: With v(0) = un, iterate (solve for v(k)):(

M(v(k−1)) + τK(v(k−1)
)

v(k) = τb(v(k−1)) + M(v(k−1))un. (12)

Each iteration requires the quick optimal solution of a tridiagonal linear system of equations. After some
steps (k = 1, . . . , kend) we set un+1 := v(kend). We have used kend = 5 successfully in case studies. The
choice kend = 1 coincides with the explicit Euler scheme (σ = 0 in (9)). So, for kend > 1 each step of
the iteration has a tendency to approach the full implicit Euler scheme. The matrices M(u) + τK(u) are
symmetric positive definite tridiagonal, hence the solution of the linear systems uses a special variant of
the Cholesky decomposition for tridiagonal matrices.

Note that the described approximation is also used to solve the forward problem (5) – (8) which is
required for the identification of G. In this simplified situation constant material values lead to constant
matrices K and M .
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4. THE INVERSE PROBLEM AND VARIANTS OF ITS SOLUTION
For the inverse problem aimed at finding the gas temperature G(t) (t ∈ [0, tend]) real measurements
y∗(t) (t ∈ [0, tend]) of the output temperature y(t) = u(l, t) (t ∈ [0, tend]) can be exploited as data, where
the simplified version of the arc test without additional textile material was performed for providing
such data. The used constants based on the technological literature (for details see also [8] and [9]) are
specified by the following list:

l = 1.6mm = ds,

κCu = 392W ·m−1K−1,

CCu = 3.4265 · 106J ·m−3K−1,

γ = 2.05 · 105m−1,

qa(t) = 7.055 · 104W ·m−2 · χ[0,tp](t),

βGas = 1.114 · 10−9W ·m−2K−4,

βObj = 4.72 · 10−8W ·m−2K−4,

h0 = 40W ·m−2K−1,

hs = 15W ·m−2K−1.

Here, χ[a,b] is the characteristic function with respect to the interval [a, b]. The values βGas and βObj are
products of dimensionsless factors with the Stefan-Boltzmann constant.

If we denote by F : G 7→ y the nonlinear operator with domain D that expresses the parameter-to-data
map, so the inverse problem can be considered as the solution of an operator equation

F (G) = y (G ∈ D) (13)

taking into account that the data y∗ represent a noisy version of the exact right-hand side y. Figure 3
shows this data y∗ really observed during the simplified test. The domain D under consideration may
contain all available a priori information on the time-dependent behavior of G including box-constraints
as well as monotonicity of gas temperature on some subintervals of time.
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Figure 3: Calibration measurement of calorimeter temperature.

4.1 GAS TEMPERATURE DETERMINATION WITHOUT REGULARIZATION
For studying the expected effect of ill-posedness occurring with equation (13) we first test a discretized
version of the least-squares fitting

‖F (G)− y∗‖2
L2(0,tend) −→ min, subject to G ∈ Dbox (14)

with a box-constraints domain Dbox defined by inequalities of the form 0 ≤ G(t) ≤ Gmax for all times t
under consideration and a maximal temperature Gmax = 8000K. A solution Gls of the extremal problem
(14) for our data y∗ is shown in Figure 4.

The peak of Gls(t) in a neighborhood of t ≈ tp = 0.5s caused by the extreme energy of the electric arc
seems to be approximated quite well. For times t after this peak a temperature decay (first with a high
and at the end with a low rate) occurs, but there we find strong oscillations of Gls in the cooling phase,
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Figure 4: Gas temperature without regularization with zoom in the lower temperature interval.

which are not physically interpretable and obviously express ill-posedness phenomena. Such oscillations
cannot be accepted in the approximate solution of G for practical use, since forward computations of the
arc test with real textile material seem to be more sensitive to gas temperature changes in the final phase
of cooling. This is due to the fact that the thermal conductivity of the isolation material is much lower
than in the simplified test situation used for solving the inverse problem.

4.2. A STANDARD TIKHONOV REGULARIZATION APPROACH
In order to overcome the drawback of ill-posedness, we should follow a regularization approach (cf., e.g.,
[1], [4]) for solving the operator equation (13) by a numerical procedure (see also [10]). Next instead of
(14) we use a discretized version of the second order standard Tikhonov method solving the extremal
problem
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Figure 5: Gas temperature with second order Tikhonov regularization and zoom.

‖F (G)− y∗‖2
L2(0,tend) + α ‖G′′‖2

L2(0,tend) −→ min, subject to G ∈ Dbox (15)

with minimizer Gα. For the selection of the regularization parameter α > 0 we use the quasi-optimality
criterion (see, e.g., [3, p.182]). In a sequence of parameters αi = 2−i α0 with α0 = 10−3 we have choosen
α = αi such that ‖Gαi+1 −Gαi

‖L2(0,tend) is minimal, which is nearly the same as minimizing the norm of
αdGα

dα . The resulting quasi-optimal Gα is shown in Figure 5. Oscillations also occur in the cooling phase,
but they are less and smaller compared to the least-squares fitting. Note that the image function F (Gα)
for that regularized solution is still a good approximation of the data function y∗.

We know the basic theoretical drawback (see, e.g., [1, Theorem 3.3]) of criteria for choosing the
regularization parameter α that do not exploit the noise level δ satisfying ‖y − y∗‖L2(0,tend) ≤ δ, but
unfortunately the rapidly increasing temperature of the calorimeter (see Figure 3) in connection with
temperatures up to 5000K near the arc and unknown inertia of the measurement system makes the
prescription of a realistic δ required for the use of a discrepancy principle very problematic. On the
other hand, the authors have good experience concerning the use of the quasi-optimality principle in very
different practical applications.
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4.3. A DESCRIPTIVE REGULARIZATION APPROACH
As third approach we use an ansatz of descriptive regularization. In detail, we add more a priori in-
formation about the qualitative behavior of the gas temperature function, in particular the knowledge
of monotonicity expressed by a more restricted domain Ddescr ⊂ Dbox. During the burning time of the
electric arc t ∈ [0, tp] we can assume a strictly growing function G(t). On the other hand, for sufficiently
large t, here t ≥ 2tp, we have a monotone decay of the gas temperature. For the gap interval t ∈ (tp, 2tp)
we do not impose additional requirements, but even for regularized solutions without monotonicity we
have no oscillations in this time interval. The regularized solution Gdescr

α presented in Figure 6 is obtained
by solving a discretized version of

‖F (G)− y∗‖2
L2(0,tend) + α‖G′′‖2

L2(0,tend) −→ min, subject to G ∈ Ddescr (16)

again based on a quasi-optimal choice of the regularization parameter α. The values Gdescr
α (t) of this

approximate solution are not very different from the values Gα(t) for small t, but by construction the
function Gdescr

α suppresses oscillations nearly complete.
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Figure 6: Gas temperature with descriptive regularization and zoom.

4.4. A SENSITIVITY STUDY
Finally we present a case study the purpose of which is to evaluate the system condition, i.e., the sensitivity
of unregularized least-squares solutions with respect to data perturbations. Moreover, the influence of
monotonicity requirements for that condition is investigated. In detail, we discretize our data function y∗

and perturb the obtained data vector y∗ by a Gaussian pseudorandom vector ε such that normalized noise
level ‖ε‖

‖y∗‖ is δ > 0. The vectors G0
ls and Gδ

ls are solutions for y∗ and yδ = y∗ + ε, respectively, and eδ
ls =

‖Gδ
ls −G0

ls‖ expresses the error caused by the data perturbation. Moreover, we repeat this procedure by
considering monotonized solutions G0

mon and Gδ
mon with error eδ

mon = ‖Gδ
mon−G0

mon‖. The monotonized
solutions are calculated from y∗ and its perturbed counterpart by least-squares projections of data and
approximate solutions onto the set of appropriate monotone functions, where monotonicity requirements
are imposed similar to the situation described in Section 4.3. Figure 7 shows the monotonized solution
G0

mon which is rather similar to the regularized solution Gdescr
α of the last subsection, but the monotonized

function is not so smooth as the descriptively regularized one.
Table 1 gives the ranges of relative errors over three realizations for solutions and their monotonized

versions. The errors approximately behave proportional to
√

δ, but the proportionality factor is essentially
smaller for the monotonized version.

δ
eδ

ls

‖G0
ls‖

eδ
mon

‖G0
mon‖

0.05 0.6 . . . 0.7 0.15 . . . 0.21
0.01 0.32 . . . 0.36 0.06 . . . 0.11
0.005 0.2 . . . 0.3 0.05 . . . 0.08
0.001 0.11 . . . 0.13 0.02 . . . 0.03

Table 1: Sensitivity to data noise.
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Figure 7: Monotonized gas temperature without regularization and zoom.

5. CONCLUSIONS
The presented mathematical model and numerical approach allow to simulate fault arc tests occurring
in textile research concerning protective clothes. This computer simulation is very cheap in comparison
with the traditional expensive laboratory experiments. The inverse problem of determining the time-
dependent function of hot gas near the electric arc seems to play an important role for the success of
the simulation. We have presented some case studies for the stable approximate solution of this inverse
problem using various regularization techniques. Smoothness and monotonicity assumptions allow to
suppress oscillations of recovered gas functions in the cooling phase.
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